How to Use DeTra in MARS15 and Calculate Residual Dose around Small Objects

V. Pronskikh,
September 15, 2011
MARS15 Tutorial
Fermilab
Two Ways to Calculate Residual Dose at a Distance from a Small Object

- MARS15 provides contact dose for relatively large objects (\(\lambda_{1\,\text{MeV}} \)). For practical applications: 1) dose at a distance; 2) Dose from relatively small objects.

- First method (with DeTra):
 1. MARS15 calculation of the production rates of individual residual nuclei,
 2. calculation of activities of the isotopes in the target with the DeTra code after certain irradiation and cooling times,
 3. conversion of activities to individual doses at a distance using specific gamma-ray constants

- Second method:
 1. MARS15 calculation of the residual dose on contact with the target,
 2. correction for a small target size,
 3. Monte-Carlo based distance correction.

V. Pronskikh, MARS15 Tutorial, Fermilab, September 15, 2011
Calculation of Isotope Production Rates

• Production rates of the residual nuclides in the gold target are calculated using MARS15.
• Production rates are used as initial data for the DeTra (built-in) code for definite irradiation and cooling times (NCLD, IMNC).
• CEM generator (ICEM 4=2, PHOT 8=-1). FERMILAB-CONF-08-322-APC
• The Cascade-Exciton Model (CEM) of nuclear reactions was proposed at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, by Gudima, Mashnik, and Toneev.
• Calculates nuclear reactions induced by nucleons, pions, and photons.
• A three-stage process: 1) IntraNuclear Cascade (INC) (re-scattered and produces secondary particles several times before the escape from a nucleus), 2) preequilibrium emission of particles during the equilibration of the excited residual nuclei formed after the INC, subsequent relaxation of nuclear excitation is treated in terms of a modified version of exciton model 3) evaporation of particles from or fission of the compound nuclei.
Calculation of Activities of Isotopes with DeTra (1)

• DeTra solves the Bateman equations governing the decay and transmutation of nuclides using transmutation trajectory analysis (TTA).
• The core of the method is that a complex web of decay and transmutation reactions can be decomposed into a set of linear chains consisting of all possible routes, or trajectories, through the web.
• A set of linear chains is constructed for each nuclide and following all the possible reaction and decay modes leading to the concentration of nuclides encountered in each chain are calculated by assuming that only the first nuclide of the chain has non-zero initial atomic density.
• Doing this for each nuclide in the initial composition and superposing the results yields the solution of the original problem. However, some chains may become very long and are thus cut when the contribution falls below a given threshold. In the case considered here, the chains are not very long and not cyclic.
Calculation of activities of the isotopes with DeTra (2)

TITLE Mu2e Au target decay heat
INIT 0.0

Au 183 0.000E+00 1.190E-04
Au 184 0.000E+00 2.880E-04
Au 185 0.000E+00 1.628E-03
Au 186 0.000E+00 2.598E-03
Au 187 0.000E+00 5.967E-03
Au 188 0.000E+00 8.064E-03
Au 189 0.000E+00 1.478E-02
Au 190 0.000E+00 1.820E-02
Au 191 0.000E+00 3.345E-02
Au 192 0.000E+00 2.696E-02
Au 193 0.000E+00 5.335E-02
Au 194 0.000E+00 4.041E-02
Au 195 0.000E+00 5.729E-02
Au 196 0.000E+00 8.437E-02

SIZE 20 100 5000 5000
LIMIT 1.0
LIBRARY nudat.bin
OUTPUT 20011.0 activation.res
POWER 0.0 0.0 2.E13
SELECTOR 1.0 1.0 0.0 0.0 1.0
IRRADIATE 365.0
SELECTOR 0.0 0.0 0.0 0.0 1.0
IRRADIATE 30.0
TIME 30.0
TIME 395.0

V. Pronskikh, MARS15 Tutorial, Fermilab, September 15, 2011
Conversion of Activities to Individual Doses (3)

\[\Gamma = 6 \times E_\gamma \times I_\gamma, \text{ where } E_\gamma \text{ – gamma-ray energy (MeV), and } I_\gamma \text{ – gamma-ray activity per decay (Ci)}. \]

Specific \(\gamma \)-ray constants to estimate the dose at 1 meter.

\[\Gamma \text{ [mSv/(hr-MBq)]}. \]

Inverse square low for other distances.

These nuclei represent 70\% of activity – correct.

V. Pronskikh, MARS15 Tutorial, Fermilab, September 15, 2011
Contact Dose Model in MARS15

- ω-factor model (star density/flux to dose)
- Distinguishes 3 energy groups: ($> 20\text{MeV}$, $1\text{MeV} < E < 20\text{MeV}$, $E < 0.5\text{eV}$)
 - (n, x_{nyp}), (n, xn), (n, p), (n, γ)
- Cascades in 17 elements: C, O, Na, Mg, Al, Si, K, Ca, Cr, Fe, Ni, Cu, Nb, Ag, Ba, W, Pb. Induced by energetic hadrons. Residual nuclei formation was simulated.
- Decay chains are followed by DeTra to determine the emission rates of the de-exitation photons.
- $12\text{hours} < T_{irr} < 20\text{years}$ and $1\text{sec} < T_{cool} < 20\text{years}$
- Corresponding dose rates on the outer surfaces were calculated from proton fluxes and related to 1) star density ($>20\text{MeV}$), and neutron fluxes (for $1\text{MeV} < E < 20\text{MeV}$, $E < 0.5\text{eV}$). Sophisticated interpolation algorithm.
 Calculated on the surface of irradiated samples $> 0.5\lambda$
See also FERMILAB-Conf-01/304-E.
Correction for a Small Target Size

x_t – ratio of the target diameter to the mean free path of the 1 MeV photons ($\lambda_t (Au) \approx 0.745 \text{ cm}$). $R_G = 0.41$ for Mu2e target.

[Website](http://physics.nist.gov/PhysRefData/contents.html)

V. Pronskikh, MARS15 Tutorial, Fermilab, September 15, 2011
Dose at a Distance from the Target

- The residual dose $D(x,y,z)$ in the air due to residual activity of an irradiated object assuming isotropic angular distribution of γ-rays emitted from the surface of the object: $D(x, y, z) = k_d \phi(x, y, z) = k_d \int dS \frac{A_s}{2\pi\rho^2}$

- $\phi(x, y, z)$ -- flux of γ-rays, A_s -- surface emission rate of γ-rays per unit area and per 2π solid angle, ρ -- distance between the observation point and the surface element dS, and k_d -- flux-to-dose conversion factor. $E_{\gamma} = 1$ MeV

- Uniformly activated infinite cylindrical object, closed form.

- $D(r) = \frac{D_0 r}{1 + \frac{r}{R}} F(\varphi \setminus \alpha)$, where D_0 -- dose on contact with the target,

\[
r = \sqrt{x^2 + y^2 + z^2}, \quad R \text{ -- radius of the cylinder},
\]

\[
F(\varphi \setminus \alpha) = \int_0^\varphi (1 - \sin^2 \alpha \sin^2 \theta)^{-\frac{1}{2}} d\theta,
\]

incomplete elliptic integral of the first kind, $\varphi = \sin^{-1} \sqrt{\frac{1+R/r}{2}}$, $\alpha = \sin^{-1} \left(\frac{2\sqrt{r/R}}{1+r/R} \right)$.

$f(r) = \frac{D(r)}{D_0}$. $f(30) = 0.0078$ and $f(100) = 0.0023$ (for Mu2e target)
Correction for Finite Target Length

Gamma flux is determined at the distance of the expected detector with the actual (16 cm, Mu2e) and quasi-infinite (20 m) targets and the ratio of these fluxes is used as the correction factor. $f_s = \frac{\phi_{\text{short}}}{\phi_{\text{long}} \cdot k_{\text{vol}}}$, $f_s(30) = 0.203$, $f_s(100) = 0.0611$

V. Pronskikh, MARS15 Tutorial, Fermilab, September 15, 2011
Conclusions

- Two methods to calculate the residual dose rates around small targets starting from the contact dose or nuclide production rate generated by MARS15 are described.
- The first one uses production rates for residual isotopes calculated by MARS15 as an input for DeTra, then activities are converted to dose at one foot using specific gamma-ray constants.
- The second method employs MARS15 for the calculation of the residual dose on contact, and then uses scaling factors to correct for the target size, incomplete elliptic integral of the first kind to introduce the distance correction and the Monte-Carlo-based finite size correction.
- The methods reveal a good agreement.

<table>
<thead>
<tr>
<th>Distance from the target, cm</th>
<th>Dose, Sv/hr (first method)</th>
<th>Dose, Sv/hr (second method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>16.7</td>
<td>13.0</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

V. Pronskikh, MARS15 Tutorial, Fermilab, September 15, 2011